3 research outputs found

    Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors

    Get PDF
    The objective of this investigation is to measure and analyze surface temperature fluctuations in pool boiling. The surface temperature fluctuations were recorded on silicon surfaces with and without multi-walled carbon nanotubes (MWCNT). Novel Thin Film Thermocouples (TFT) are micro-fabricated on test substrates to measure surface temperatures. A dielectric liquid refrigerant (PF-5060) is used as test fluid. Both nucleate and lm boiling regimes are investigated for the silicon test substrates. Dynamics of nucleate boiling is investigated on the CNT coated substrates. High frequency temperature fluctuation data is analyzed for the presence of determinism using non-linear time series analysis techniques in TISEAN(copyright) software. The impact of subcooling and micro/nano-scale surface texturing using MWCNT coatings on the dynamics of pool boiling is assessed. Dynamic invariants such as correlation dimensions and Lyapunov spectrum are evaluated for the reconstructed attractor. A non-linear noise reduction scheme is employed to reduce the level of noise in the data. Previous investigations in pool boiling chaos, reported in literature were based on temperature measurements underneath the test surface consisting of single or few active nucleation sites. Previous studies have indicated the presence of low-dimensional behavior in nucleate boiling and high-dimensional behavior in CHF and film boiling. Currently, there is no study detailing the effects of multiple nucleation sites, subcooling and surface texturing on pool boiling dynamics. The investigation comprises of four parts: i) in situ micro-machining of Chromelalumel (K-type) TFT, ii) calibration of these sensors, iii) utilizing these sensors in pool boiling experiments iv) analysis of these fluctuations using techniques of nonlinear time series analysis. Ten TFT are fabricated on a rectangular silicon surface within an area of ~ 3.00 cm x 3.00 cm. The sensing junctions of the TFT measure 50 mm in width and 250 nm in depth. Surface temperature fluctuations of the order of i) 0.65-0.93 degrees C are observed near ONB ii) 2.3-6.5 degrees C in FDNB iii) 2.60-5.00 degrees C at CHF and iv) 2.3-3.5 degrees C in film boiling. Investigations show the possible presence of chaotic dynamics near CHF and in film-boiling in saturated and subcooled pool boiling. Fully-developed nucleate boiling (FDNB) is chaotic. No clear assessment of the dynamics could be made in the onset of nucleate boiling (ONB) and partial nucleate boiling (PNB) regimes due to the effects of noise. However, the frequency spectra in these regimes appear to have two independent frequencies and their integral combinations indicating a possible quasiperiodic bifurcation route to chaos. The dimensionality in FDNB, at CHF and in film-boiling is lower in saturated pool boiling as compared to values in corresponding regimes in subcooled pool boiling. Surface temperature fluctuations can damage electronic components and need to be carefully controlled. Understanding the nature of these fluctuations will aid in deciding the modeling approach for surface temperature transients on an electronic chip. Subsequently, the TFT signals can be employed in a suitable feedback control loop to prevent the occurrence of hotspots

    Pool boiling studies on nanotextured surfaces under highly subcooled conditions

    Get PDF
    Subcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) and 25 microns (Type-B) in height. A third bare silicon wafer is used for control experiments. The test fluid is PF-5060, a fluoroinert with a boiling point of 56°C (Manufacturer: 3M Co.). The apparatus is of the constant heat flux type. Pool boiling experiments in nucleate and film boiling regimes are reported in this study. Experiments are carried out under low subcooling (5 °C and 10 °C) and high subcooling conditions (20°C to ~ 38°C). At approximately 38°C, a non-departing bubble configuration is obtained on a bare silicon wafer. Increase in subcooling is found to enhance the critical heat flux (CHF) and the CHF is found to shift towards higher wall superheats. Presence of MWCNT on the test surface led to an enhancement in heat flux. Potential factors responsible for boiling heat transfer enhancement on heater surfaces coated with MWCNT are identified as follows: a. Enhanced surface area or nano - fin effect b. Higher thermal conductivity of MWCNT than the substrate c. Disruption of vapor-liquid vapor interface in film boiling, and of the “microlayer” region in nucleate boiling d. Enhanced transient heat transfer caused by local quasi-periodic transient liquid-solid contacts due to presence of the “hair like” protrusion of the MWCNT e. Enhancement in the size of cold spots f. Pinning of contact line, leading to enhanced surface area underneath the bubble leading to enhanced heat transfer Presence of MWCNT is found to enhance the phase change heat transfer by approximately 400% in nucleate boiling for conditions of low subcooling. The heat transfer enhancement is found to be independent of the height of MWCNT in nucleate boiling regime in the low subcooling cases. About 75%-120% enhancement in heat transfer is observed for surfaces coated with MWCNT under conditions of high subcooling in the nucleate boiling regime. Surfaces coated with Type-B MWCNT show a 75% enhancement in heat transfer in the film boiling regime under conditions of low subcooling

    Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors

    Get PDF
    The objective of this investigation is to measure and analyze surface temperature fluctuations in pool boiling. The surface temperature fluctuations were recorded on silicon surfaces with and without multi-walled carbon nanotubes (MWCNT). Novel Thin Film Thermocouples (TFT) are micro-fabricated on test substrates to measure surface temperatures. A dielectric liquid refrigerant (PF-5060) is used as test fluid. Both nucleate and lm boiling regimes are investigated for the silicon test substrates. Dynamics of nucleate boiling is investigated on the CNT coated substrates. High frequency temperature fluctuation data is analyzed for the presence of determinism using non-linear time series analysis techniques in TISEAN(copyright) software. The impact of subcooling and micro/nano-scale surface texturing using MWCNT coatings on the dynamics of pool boiling is assessed. Dynamic invariants such as correlation dimensions and Lyapunov spectrum are evaluated for the reconstructed attractor. A non-linear noise reduction scheme is employed to reduce the level of noise in the data. Previous investigations in pool boiling chaos, reported in literature were based on temperature measurements underneath the test surface consisting of single or few active nucleation sites. Previous studies have indicated the presence of low-dimensional behavior in nucleate boiling and high-dimensional behavior in CHF and film boiling. Currently, there is no study detailing the effects of multiple nucleation sites, subcooling and surface texturing on pool boiling dynamics. The investigation comprises of four parts: i) in situ micro-machining of Chromelalumel (K-type) TFT, ii) calibration of these sensors, iii) utilizing these sensors in pool boiling experiments iv) analysis of these fluctuations using techniques of nonlinear time series analysis. Ten TFT are fabricated on a rectangular silicon surface within an area of ~ 3.00 cm x 3.00 cm. The sensing junctions of the TFT measure 50 mm in width and 250 nm in depth. Surface temperature fluctuations of the order of i) 0.65-0.93 degrees C are observed near ONB ii) 2.3-6.5 degrees C in FDNB iii) 2.60-5.00 degrees C at CHF and iv) 2.3-3.5 degrees C in film boiling. Investigations show the possible presence of chaotic dynamics near CHF and in film-boiling in saturated and subcooled pool boiling. Fully-developed nucleate boiling (FDNB) is chaotic. No clear assessment of the dynamics could be made in the onset of nucleate boiling (ONB) and partial nucleate boiling (PNB) regimes due to the effects of noise. However, the frequency spectra in these regimes appear to have two independent frequencies and their integral combinations indicating a possible quasiperiodic bifurcation route to chaos. The dimensionality in FDNB, at CHF and in film-boiling is lower in saturated pool boiling as compared to values in corresponding regimes in subcooled pool boiling. Surface temperature fluctuations can damage electronic components and need to be carefully controlled. Understanding the nature of these fluctuations will aid in deciding the modeling approach for surface temperature transients on an electronic chip. Subsequently, the TFT signals can be employed in a suitable feedback control loop to prevent the occurrence of hotspots
    corecore